Boehringe
Ingelheim
NADA 141-273, Approved by FDA

Vetmedin ${ }^{\circ}$

pimobendan) Chewable Tablets

Cardiac drug for oral use in dogs only
Caution: Federal law restricts this drug to use by or on the order of a licensed veterinarian.

Description: Vetmedin (pimobendan) is supplied as oblong half-scored chewable tablets containing 1.25 or 5 mg pimobendan per tablet. Pimobendan, a benzimidazole-pyridazinone derivative, is a no sympathomimetic, non-glycoside inotropic drug with vasodilatative properties. Pimobendan exerts a stimulatory myocardial effect by a dual mechanism of action consisting of an increase in calcium sensitivity of cardiac myofilaments and inhibition of phosphodiesterase (Type III). Pimobendan exhibits vasodilating activity by inhibiting phosphodiesteras II activity. The chemical name of pimobendan is 4,5-dihydro-6-[2-(4-methoxyphenyl)-1H benzimidazole-5-yl]-5-methyl-3(2H)-pyridazinone. The structural formula of pimobendan is:

Indications: Vetmedin (pimobendan) is indicated fo the managementof the signs of mild, moderate, or evere (modified NYHA Class IIa, IIIb,or IVc) congestive heart failure in dogs due to atrioventricular valvularin sufficiency (AVVI) or dilated cardiomyopathy (DCM) etmedin is indicated for use with concurrent therap or congestive heart failure (e.g., furosemide, etc.) a appropriate on a case-by- case basis.
${ }^{a}$ A dog with modified New York Heart Association (NYHA) Class II heart failure has fatigue, shortness of breath, coughing, etc. apparent when ordinary exercise is exceeded.
${ }^{\mathrm{b}}$ A dog with modified NYHA Class III heart failure is comfortable at rest, but exercise capacity is minimal
${ }^{\text {c }}$ A dog with modified NYHA Class IV heart failure has no capacity for exercise and disabling clinical signs are present even at rest.

Dosage and Administration: Vetmedin should be administered orally at a total daily dose of $0.23 \mathrm{mg} / \mathrm{lb}$ ($0.5 \mathrm{mg} / \mathrm{kg}$) body weight, using a suitable combination of whole or half tablets. The total daily dose should be divided into 2 portions that are not necessarily equal, and the portions should be administered approximately 2 hours apart (i.e., morning and evening). The tablets are scored and the calculated dosage should be provided to the nearest half tablet increment.

Contraindications: Vetmedin should not be given in cases of hypertrophic cardiomyopathy, aortic stenosis, or any other clinical condition where an augmentation of cardiac output is inappropriate for functional o anatomical reasons.

Warnings: Only for use in dogs with clinical evidence of heart failure. At 3 and 5 times the recommended dosage, administered over a 6-month period of time, pimobendan caused an exaggerated hemodynamic response in the normal dog heart, which was associated with cardiac pathology (See Animal Safety).

Human Warnings: Not for use in humans. Keep this and all medications out of reach of children. Consult a physician in case of accidental ingestion by humans.

Precautions: The safety of Vetmedin has not been established in dogs with asymptomatic heart disease or in heart failure caused by etiologies other than AVVI or DCM. The safe use of Vetmedin has not been evaluated in dogs younger than 6 months of age, dogs with congenital heart defects, dogs with diabetes mellitu or other serious metabolic diseases, dogs used for breeding, or pregnant or lactating bitches.

Adverse Reactions: Clinical findings/adverse reactions were recorded in a 56 -day field study of dogs with ongestive heart failure (CHF) due to AVVI (256 dogs) or DCM (99 dogs). Dogs were treated with either Vetmedin (175 dogs) or the active control enalapril maleate (180 dogs). Dogs in both treatment groups received additional background cardiac therapy (See Effectiveness for details and the difference in digoxin administration between treatment groups).
he Vetmedin group had the following prevalence (percent of dogs with at least one occurrence) of common adverse reactions/new clinical findings (not present in a dog prior to beginning study treatments): poor appetite (38\%), lethargy (33\%), diarrhea (30\%) dyspnea (29%), azotemia (14%), weakness and ataxia 13%), pleural effusion (10%) syncope (9%) cough 7%) sudden death (6%), ascites (6%) and heart murmur (3\%) Prevalence was similar in the activ control group. The prevalence of renal failure was higher in the active control group (4%) compared to th

Vetmedin group (1\%)
Adverse reactions/new clinical findings were seen in both treatment groups and were potentially related to CHF, the therapy of CHF, or both. The following adverse reactions/new clinical findings are listed according to body system and are not in order of prevalence: CHF ody systen arth, chordae tendineae rupture, left death, suddendeath, corda trial tear, arriythmias overall, tachycardia, syncope, eak pulses, irregular pulses, ncreased pul derna, dyspnea, effusion ascites, hepatic congestion gagging, pleuralitusion, as es, hepatic congestion, lecs, le appetie, vi ing, da wea, melo, weig oss, lethargy, depression, weakness, collapse, shaking trembling, ataxia, seizures, restlessness, agitation pruritus, increased water consumption, increased urination, urinary accidents, azotemia, dehydration, abnormal serum electrolyte, protein, and glucose alues, mild increases in serum hepatic enzyme levels, and mildly decreased platelet counts.
See Table 1 for mortality due to CHF (including euthanasia, natural death, and sudden death) and for he development of new arrhythmias (not present in a dog prior to beginning study treatments) by treatment roup and type of heart disease (AVVI or DCM) in the 56 -day field study
Table 1: CHF Death and New Arrhythmias in the 56-Day Field Study

	Vetmedin ${ }^{*}$ Group	Active Control Group
Dogs that died due to CHF	$\begin{aligned} & 14.3 \% \\ & \mathrm{n}=175 \end{aligned}$	$\begin{aligned} & 14.4 \% \\ & \mathrm{n}=180 \end{aligned}$
	9 of 126 dogs with AVVI	$\begin{aligned} & 16 \text { of } 130 \text { dogs } \\ & \text { with AVVI } \end{aligned}$
	$\begin{gathered} 16 \text { of } 49 \text { dogs with } \\ \text { DCM } \end{gathered}$	$\begin{aligned} & 10 \text { of } 50 \text { dogs with } \\ & \text { DCM } \end{aligned}$
Dogs that developed new arrhythmias ${ }^{\text {a }}$	$\begin{aligned} & 39.4 \% \\ & \mathrm{n}=175 \end{aligned}$	$\begin{aligned} & 45.0 \% \\ & \mathrm{n}=180 \end{aligned}$
	$\begin{aligned} & 45 \text { of } 126 \text { dogs } \\ & \text { with AVVI } \end{aligned}$	$\begin{aligned} & 59 \text { of } 130 \text { dogs } \\ & \text { with AVVI } \end{aligned}$
	$\begin{aligned} & 24 \text { of } 49 \text { dogs } \\ & \text { with DCM } \end{aligned}$	$\begin{aligned} & 22 \text { of } 50 \text { dogs } \\ & \text { with DCM } \end{aligned}$

New arrhythmias included supraventricular premature beats and tachycardia, atrial fibrillation, atrioventricular block, sinus bradycardia, ventricular premature beats and tachycardia, and bundle branch block.

Following the 56-day masked field study, 137 dogs in the Vetmedin group were allowed to continue n Vetmedin in an open-label extended-use study without restrictions on concurrent therapy. The adverse eactions/new clinical findings in the extended-use tudy were consistent with those reported in the 56-da study, with the following exception: One dog in the extended-use study developed acute cholestatic live failure after 140 days on Vetmedin and furosemide.

In foreign post-approval drug experience reporting, the following additional suspected adverse reactions were eported in dogs treated with a capsule formulation pimobendan: hemorrhage, petechia, anemia hyperactivity, excited behavior, erythema, rash, drooling, constipation, and diabetes mellitus.

To report suspected adverse reactions, to obtain a Material Safety Data Sheet, or for technical assistanc call 1-866-638-2226.

Clinical Pharmacology: Pimobendan is oxidatively demethylated to a pharmacologically active metabolite which is then conjugated with sulfate or glucuronic acid and excreted mainly via feces. The mean exten of protein binding of pimobendan and the active metabolite in dog plasma is $>90 \%$. Following a singl ral administration of $0.25 \mathrm{mg} / \mathrm{kg}$ Vetmedin tablets he maximal mean (± 1 SD) plasma concentrations (Cmax) of pimobendan and the active metabolite were $309(0.76) \mathrm{ng} / \mathrm{ml}$ and $3.66(1.21) \mathrm{ng} / \mathrm{ml}$, respectively. ndividual dog Cmax values for pimobendan and the active metabolite were observed 1 to 4 hours post-dose (mean: 2 and 3 hours, respectively). The total body learance of pimobendan was approximately 90 $\mathrm{mL} / \mathrm{min} / \mathrm{kg}$, and the terminal elimination half-lives of pimobendan and the active metabolite were approximately 0.5 hours and 2 hours, respectively. lasma levels of pimobendan and active metabolite were below quantifiable levels by 4 and 8 hours after ral administration, respectively. The steady-state volume of distribution of pimobendan is $2.6 \mathrm{~L} / \mathrm{kg}$ indicating that the drug is readily distributed into issues. Food decreased the bioavailability of an queous solution of pimobendan, but the effect of food on the absorption of pimobendan from Vetmedin tablets is unknown.

In normal dogs instrumented with left ventricular LV) pressure transducers, pimobendan increased V dP/dtmax (a measure of contractility of the heart) a dose dependent manner between 0.1 and 0.5 $\mathrm{mg} / \mathrm{kg}$ orally. The effect was still present 8 hours after dosing. There was a delay between peak blood levels of pimobendan and active metabolite and the
maximum physiologic response (peak LV dP/dtmax) lood levels of pimobendan and active metabolite egan to drop before maximum contractility was seen Repeated oral administration of pimobendan did not esult in evidence of tachyphylaxis (decreased positive notropic effect) or drug accumulation (increased positive inotropic effect). Laboratory studies indicate that the positive inotropic effect of pimobendan may be attenuated by the concurrent use of a $ß$-adrenergic blocker or a calcium channel blocker.
Effectiveness: In a double-masked, multi-site, 56-day field study, 355 dogs with modified NYHA Class II, III, or IV CHF due to AVVI or DCM were randomly assigned o either the active control (enalapril maleate) or the Vetmedin (pimobendan) treatment group. Of the 355 ogs, 52% were male and 48% were female; 72% were diagnosed with AVVI and 28% were diagnosed with DCM; 34\% had Class II, 47\% had Class III, and 19\% had Class IV CHF. Dogs ranged in age and weight from 1 to 17 years and 3.3 to 191 lb , respectively. The most ommon breeds were mixed breed, Doberman Pinsche Cocker Spaniel, Miniature/Toy Poodle, Maltese Chihuahua, Miniature Schnauzer, Dachshund, and Cavalier King Charles Spaniel. The 180 dogs (130 AVVI, 50 DCM) in the active control group received enalapril maleate ($0.5 \mathrm{mg} / \mathrm{kg}$ once or twice daily), and all but 2 received furosemide. Per protocol, all dogs with DCM in the active control group received digoxin.

The 175 dogs (126 AVVI, 49 DCM) in the Vetmedin roup received pimobendan ($0.5 \mathrm{mg} / \mathrm{kg} /$ day divided noto 2 portions that were not necessarily equal, and the portions were administered approximately 12 hours apart), and all but 4 received furosemide. Digoxin was ptional for treating supraventricular tachyarrhythmia either treatment group, as was the addition of a B-adrenergic blocker if digoxin was ineffective in Controlling heart rate After initial treatment at the linic on Day 1 dog owners were to administer the assigned product and concurrent medications for up to 56 ± 4 days.

The determination of effectiveness (treatment success) for each case was based on improvement in at least 2 of the 3 following primary variables: modified NYHA classification, pulmonary edema score by a masked veterinary radiologist, and the investigator's overall clinical effectiveness score (based on physical xamination, radiography, electrocardiography, and linical pathology). Attitude, pleural effusion, coughing ctivity level, furosemide dosage change, cardiac ize, body weight, survival, and owner observations ere secondary evaluations contributing information supportive to product effectiveness and safety.

Based on protocol compliance and individual case integrity, 265 cases (134 Vetmedin, 131 active control) were evaluated for treatment success on Day 29. See Table 2 for effectiveness results.

Table 2: Effectiveness Results for the 56-Day Field Study

	Vetmedin ${ }^{*}$ Group	Active Control Group
Treatment Success on Day 29	$\begin{aligned} & 80.7 \% \\ & \mathrm{n}=134 \end{aligned}$	$\begin{aligned} & 76.3 \% \\ & \mathrm{n}=131 \end{aligned}$
	$\begin{gathered} 88 \text { of } 101 \text { dogs } \\ \text { with AVVI } \end{gathered}$	$\begin{aligned} & 77 \text { of } 100 \text { dogs } \\ & \text { with AVVI } \end{aligned}$
	$\begin{aligned} & 20 \text { of } 33 \text { dogs } \\ & \text { with DCM } \end{aligned}$	23 of 31 dogs with DCM
Treatment Success on Day 56	$\begin{aligned} & 71.1 \% \\ & \mathrm{n}=113 \end{aligned}$	$\begin{aligned} & 67.2 \% \\ & \mathrm{n}=110 \end{aligned}$
	66 of 85 dogs with AVVI	56 of 85 dogs with AVVI
	$\begin{aligned} & 13 \text { of } 28 \text { dogs } \\ & \text { with DCM } \end{aligned}$	$\begin{aligned} & 17 \text { of } 25 \text { dogs with } \\ & \text { DCM } \end{aligned}$
No increase in furosemide dose between Day 1 and Day 29	$\begin{aligned} & 78.3 \% \\ & n=130 \end{aligned}$	$\begin{aligned} & 68.6 \% \\ & n=126 \end{aligned}$

At the end of the 56 -day study, dogs in the Vetmedin group were enrolled in an unmasked field study to monitor safety under tended use without restrictions to montor safery

Vetmedin was used safely in dogs concurrently receiving furosemide, digoxin, enalapril, atenolo spironolactone, nitroglycerin, hydralazine, diltiazem, spironolactone, nitroglycerin, hydralazine, dil prevention), antibiotics (metronidazole, cephalexin, prevention), antiblatics (metronidazole, cephalex
amoxicillin-clavulanate, fluoroquinolones), topical ophthalmic and otic products, famotidine, theophylline, ophthalmic and otic products, famotidine, theophylline, levothyroxine sodium, diphenhydramine, hydrocod metoclopramide, and bu

Palatability: In a laboratory study, the palatability of Vetmedin was evaluated in 20 adult female Beagle dogs offered doses twice daily for 14 days. Ninety percent (18 20 dogs) voluntarily consumed more than 70% of th 2 tablets offered. Including two dogs that consumed only 4 and 7% of the tablets offered, the average voluntary consumption was 84.2%
hewable tablets were administered to 6 healthy Beagles per treatment group at 0 (control), 1,3 , and 5 times the recommended dosage for 6 months. See Table 3 for cardiac pathology results. The cardiac pathology/ histopathology noted in the 3 X and 5 X dose groups is typical of positive inotropic and vasodilator drug toxicity in normal dog hearts, and is associated with xaggerated hemodynamic responses to these drugs. one of the dogs developed signs of heart failure and here was no mortality
Table 3: Incidence of Cardiac Pathology/
Histopathology in the Six month Safety Study

Severe left ventricular hypertrophy with multifocal subendocardial ischemic lesions	One 3 X and two $5 \mathrm{Xdogs} \mathrm{s}^{\mathrm{a}}$
Moderate to marked myxomatous thickening of the mitral valves	Three 5X dogs
Myxomatous thickening of the chordae tendineae	One 3X and two 5X dogs
Endocardial thickening of the left ventricular outflow tract	One 1X, two 3X, and two 5X dogs
Left atrial endocardial thickening (jet lesions) in 2 of the dogs that developed murmurs of mitral valve insufficiency	One 3X and one 5X dog
Granulomatous inflammatory lesion in the right atrial myocardium	One 3X dog

Murmurs of mitral valve insufficiency were detected in one 3X (Day 65) and two 5X dogs (Days 135 and 163). These murmurs (grades II-III of VI) were not associated with clinical signs.

Indirect blood pressure was unaffected by Vetmedin at the label dose (1X). Mean diastolic blood pressure was decreased in the $3 X$ group (74 mmHg) compared to the ntrol group (82 mmHg). Mean systolic blood pressur was decreased in the 5 X group (117 mmHg) compared to the control group (124 mmHg). None of the dogs had clinical signs of hypotension.
On 24-hour Holter monitoring, mean heart rate was ncreased in the 5X group (101 beats $/ \mathrm{min}$) compared o the control group (94 beats $/ \mathrm{min}$). Not counting escape beats, the 3 X and 5 X groups had slightly higher numbers of isolated ventricular ectopic complexes VEs). The maximum number of non-escape VEs ecorded either at baseline or in a control group dog was VEs/24 hours. At either Week 4 or Week 20, three 3 X roup dogs had maximums of 33,13 , and $10 \mathrm{VEs} / 24$ hours, and two 5X group dogs had maximums of 22 nd 9 VEs/24 hours. One $1 \times$ group dog with no VEs a baseline had $6 \mathrm{VEs} / 24$ hours at Week 4 and again at Week 20. Second-degree atrioventricular heart block was recorded in one $3 X$ group dog at Weeks 4 and 20, nd in one dog from each of the $1 X$ and 5 X groups at Week 20. None of the dogs had clinical signs associated with these electrocardiogram changes.
eatment was associated with small differes in mean platelet counts (decreased in the 3X and 1X roups), potassium (increased in the 5X group), glucos decreased in the 1 X and 3 X groups), and maximum blood glucose in glucose curves (increased in the 5X group). All individual values for these variables were within the normal range. Three 1 X and one 5 X group dogs had mild elevations of alkaline phosphatase (less than two times normal).
oose stools and vomiting were infrequent and selflimiting.
torage Information: Store at 20° to $25^{\circ} \mathrm{C}\left(68^{\circ}\right.$ to $\left.77^{\circ} \mathrm{F}\right)$ cursions permited between 15° and $30^{\circ} \mathrm{C}$ (between 59° and 86° F).

How Supplied: Vetmedin ${ }^{0}$ (pimobendan) Chewable Tablets: Available as 1.25 and 5 mg oblong half-scored chewable tablets -50 tablets per bottle.
NDC 0010-4480-01-1.25 mg - 50 tablets
NDC 0010-4482-01-5 mg - 50 tablets
Manufactured by:
MEDA Manufacturing GmbH
Cologne, Germany

Manufactured for:

Boehringer Ingelheim Vetmedica, Inc.
St. Joseph, MO 64506 U.S.A.

Bebring Incel icensed to Boehringer Ingelheim Vetmedica, Inc.

Copyright © 2012 Boehringer Ingelheim Vetmedica, Inc. or an affiliated company. All Rights Reserved
448004-02
Code 448011, 448211
Revised 03/2012

